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Introduction: Design Problem

Designing new objects with desired property is a fundamental problem in various domains.

* Including biology, chemistry, robotics, aircraft design.

Main Goal: find a new input * &€ R% that maximizes the black-box function f* : Rl - R

* Which is typically expensive to be evaluated.

r" = argmaxf”(x)
reRL




Introduction: Model-based Optimization

Challenge: f(z)

* Moreover, evaluation often accompanies (e.g., protein synthesis).

Common Approach: Model-based optimization
 Use acheap proxy model f(x;8) which approximates f*(x), ie., f(x;0) =~ f*(x)
- After that, find a surrogate solution Z which maximizes the proxy model:¥ = arg max f(x; )

L
- Online MBO: access to the black box function f* () is possible reR




Introduction: Offline Model-based Optimization

Recall: New evaluation of black-box function f*is mostly difficult.

* |t often contains serious danger or expensive cost for evaluation. (e.g., aircraft design)

Recent Approach: ‘Offline’ model-based optimization (Offline MBO)

«  Only offline dataset from previous observations is allowed: D = {(x;, y;)}L,
« Noadditional function queries are allowed: no access to f *with the new inputs.




Goal: Offline Model-based Optimization

Goal: Generalizable proxy model outside the training data.

Challenge: Unexpected output from the learned DNN proxy model f(z; 0) [Fuetal, 2021, Trabucco et al., 2021]
«  Why?: Overfitting at the training data: too sharp minima;

* May leads to wrong solution

Wrong solution

[Fu et al., 2020] Offine Model-based Optimization via Normalized Maximum Likelihood, ICLR 2021.
[Trabucco et al., 2021] Conservative Objective Models: A Simple Approach to Effective Model-based Optimization, ICML 2021



Our Idea: Regularizing Smoothness Prior

Goal: Generalizable proxy model outside the training data.

Question: What is a effective prior for regularizing the proxy model f(z;0) ?
|dea: We propose to utilize regularizations based on the smoothness prior!

Wrong solution
Accurate solution

Without local smoothness prior With local smoothness prior

Method 1: Regularization for general data points (Robust Pre-training)
Method 2: Regularization for the current solution candidate (Model Adaptation)



—

Motivation: Smoothness Prior

Smoothness prior: Have known to enhance the generalization in various situations [Rosca et al., 2020]
*  Weight decay [llya et al, 2018]
» Spectral regularization [Yuichi et al., 2018]

* Gradient norm penalty [Jure et al., 2017; Michael et al., 2018]

Moreover, they are highly correlated to adversarial robustness; (= smooth at the worst direction)
* Shows empirical correlation: [Novak et al,, 2018, Szegedy et al., 2013]

* Theoretical justification [Justin et al., 2018]

Rosca et al., 2020] A Case for New Neural Network Smoothness Constraints, NeurlPS 2020W.

Ilya et al., 2018] Decoupled Weight Decay Regularization, ICLR 2018

Yuichi et al., 2018] Spectral Norm Regularization for Improving the Generalization, ICLR 2018

Jure et al., 2017] Robust Large Margin Deep Neural Networks, IEEE Transactions on Signal Processing, 2017
Michael Arbel, 2018] On Gradient Regularizers for MMD GANs, NeurlPS 2018

Novak et al., 2018] Sensitivity and Generalization

Szegedy et al., 2013] Intriguing properties of Neural Networks, ICLR 2013

Justin et al., 2018] Adversarial Spheres, 2018



Overview: Robust Model Adaptation (RoMA)

RoMA: We propose a novel offline MBO framework to adaptively adjust the model.

* Consists of two stage procedure.

At a high level, RoMA is operated as follows:
f0_1 =argmin L ,x(o) eD

fort=0to T
0, = update(x(t), 0 1,0_1)

U+ = gradient-update(z?, 6;)

pE+D)
4
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Step 1. Pre-training Step 2. Model adaptation and solution update
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Overview: Robust Model Adaptation (RoMA)

RoMA: We propose a novel offline MBO framework to adaptively adjust the model.

* Consists of two stage procedure

Stage 1. Robust pre-training of the proxy model.
« Method 1: Regularization for general data points

Minimize max [E(x,y)Np [(f (z; 5) — y)ﬂ} over 0
0eB(0)
where B(0) := {é: 10— Gollr <e-0ellr YE=1,--- ,L}.

Paramter of £-th layer matrix

Stage 2. Model adaptation & gradient-based solution update

» Method 2: Regularization for the current solution candidate

6, = argmm[ 1V f (2 )] |2 +a(fz®;8) - f@®; gt_l))a]’ 0., =0

6cB(6)

x=x)

) = ™ 4+ Vo (25 00)] i)



Stage 1. Robust Pre-training

Stage 1. Robust pre-training of the proxy model.
* Worst-case optimization to the weight perturbation.
* Motivated by the regularization proposed in [Wu et al., 2020]

Minimize max [E(x,y)Np [(f (z; 5) — y)QH over @
deB(0)

where B(0) := {é: 10— Gollr <e-0ellr VE=1,--- ,L}.

Paramter of £-th layer matrix

Note: We are utilizing Gaussian noise data augmentation while training.

* For input-level smoothness regularization.

[Cohen et al., 2019] Carried Adversarial Robustness via Randomized Smoothing, ICML 2019
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Stage 2. Model Adaptation & Solution Update

Stage 2. Model adaptation & Solution Update
We update the solution at the adjusted model.

0eB(0)

Fa(f@0:0) — f:6,.))%],

2D = 2 4y vV, f(x;60,)]

r=x(t)
r=x(t)

Note: Adaptation leads the update at the model which satisfies:

o maintain accurate prediction at the training dataset

Smooth at the current solution z(*)

0_1 =20
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Stage 2. Model Adaptation & Solution Update

Stage 2. Model adaptation & Solution Update
« We update the solution at the adjusted model.

0eB(0)

r=x(t)

2D = 2 4y vV, f(x;60,)]

x=x(t)

Note: Adaptation leads the update at the model which satisfies:

« Tomaintain accurate prediction at the training dataset

- Smooth at the current solution z(?)

Remark 1: Why adaptive framework?

 lterative update via gradient ascent — causes distributional shift; requires adjustment

+a(f(@®;0) — f(x<t>;9t_1))2], 0_1=0
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Stage 2. Model Adaptation & Solution Update

Stage 2. Model adaptation & Solution Update
« We update the solution at the adjusted model.

Ht o argmin[ Hfo(x7 é)HQ

-+ Ck(f(-??(t); é) - f(x(t)§ 9t—1))2] , 0_1=10
OcB(6)

r=x(t)

2D = 2 4y vV, f(x;60,)]

x=x(t)

Note: Adaptation leads the update at the model which satisfies:

« Tomaintain accurate prediction at the training dataset

- Smooth at the current solution z(?)

Remark 2: Minimizing a gradient norm

« Straightforward regularization; for make the model smooth at ()

13



Stage 2. Model Adaptation & Solution Update

Stage 2. Model adaptation & Solution Update
« We update the solution at the adjusted model.

Ht o argmin[ Hfo(x7 é)HQ

-+ Ck(f(-??(t); é) = f(x(t)§ Ht—l))Q] , 0_1=10
OcB(6)

r=x(t)

:L*(t+1) = x(t) +n fo($§ Ht)‘x:x@)

Remark 3: Utilize pseudo-label as the regularization

* Note: Repeating updates via gradient ascent leads distributional shift.

« (Can be viewed as test time adaptation in image classification [Wang et al., 2021]

[Wang et al., 2019] Fully test-time adaptation by entropy minimization, ICLR 2021
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Stage 2. Model Adaptation & Solution Update

Stage 2. Model adaptation & Solution Update
« We update the solution at the adjusted model.

0, = a}‘gmin[ Hvazf(xv é)HQ
deB(0)

r=x(t)

2D = 2 4y vV, f(x;60,)]

x=x(t)

Remark 4: Accurate prediction at the dataset D

« We have flat loss landscape to the model parameter; achieved by robust pre-training

Remark 5: Consider only 2(® for adjustment? No other inputs?

* As we are updating the solution via gradient ascent (which is ‘local update’)

+a(f(@®;0) — f(x<t>;9t_1))2], 0_1=0
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Idea: Handling Discrete Inputs

Recall: Discrete inputs + Gradient ascent is problematic
|dea: Utilize VAE [kingma et al., 2014] and perform optimization on the latent space

r—| 9 |—-z—=| h |-z

Encoder Network Decoder Network

f(z;0) = f(g(x); 0) ~ f*(x)
Z = argma ax [ (z;0)
= h(Z)

x

[Kingma et al., 2014] Auto-Encoding Variational Bayes, ICLR 2014



Experiments: Main Result (100t")

Verified on offline model-based optimization benchmark, Design-bench [Trabucco et al., 2021]
We start from initial 128 high-scored inputs from the dataset.

* Averaged over 16 runs

« 100t best score / 50t": median score

Table 1: Comparison of 100th percentile scores for each task. We mark the scores within one standard
deviation from the highest average score to be bold.

Discrete domain Continuous domain

[Trabucco et al., 2021] Benchmarks for Data-Driven Offline Model-Based Optimization

Method GFP Molecule  Supercond. Hopper Ant Dkitty Avg.t
Dataset Max 3.152 6.558 73.90 1361.6 108.5 215.9 1.000
CbAS [5] 3.408+0.029 6.301+0.131 72.17+8.652  547.1+4239 393.0+3.750 396.1+60.65 1.324
Autofocus [8] 3.365+0.023 6.345+0.141 77.07+11.11 443 .8+1429 386.9+1058 376.3+47.47 1.286
NEMO [10] 3.359+0.036 6.682+0.209 127.0+7.292 2130.1+506.9 393.7+6.135 431.6+47.79 1.687
MINSs [24] 3.315+0.029 6.508+0.236 80.23+10.67 746.1+636.8 388.5+9.085 352.9+38.65 1.304
COMs [51] 3.305+0.024 6.876+0.128 110.0+6.804 2395.7+561.7 378.8+10.01 341.4+2847 1.589
Grad. Ascent [52] 2.894+0.001 6.636+0.066 89.64+9.201 1050.8+2845 399.9+4941 390.7+49.24 1.237 .
RoMA (Ours)  3.357+0.024 6.890+0.122 103.9+5.487 2466.5+359.2 468.5+12.68 384.3+51.68 1.705 (@) = Yon

Ymax — Ymin
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Experiments: Main Result (50t")

Verified on offline model-based optimization benchmark, Design-bench [Trabucco et al., 2021]
We start from initial 128 high-scored inputs from the dataset.

* Averaged over 16 runs

« 100t best score / 50t: median score

Table 2: Comparison of 50th percentile scores for each task. We mark the scores within one standard
deviation from the highest average score to be bold.

Discrete domain Continuous domain

[Trabucco et al., 2021] Benchmarks for Data-Driven Offline Model-Based Optimization

Method GFP Molecule  Supercond. = Hopper Ant Dkitty Avg.T
Dataset Max 3.152 6.558 73.90 1361.6 108.5 215.9 1.000
CbAS [5] 3.269+0.018 5.472+0.123 32.21+7.255 132.5+23.88 267.3+16.55 203.2+3.580 0.826
Autofocus [8] 3.216+0.029 5.759+0.158 31.57+7.457 116.4+1866 176.7+5994 199.3+8909 0.752
NEMO [10] 3.219+0.039 5.814+0.092 66.41+4.618 390.2+4337 326.9+5229 180.8+34.94 0.960
MINSs [24] 3.135+0.019 5.806+0.078 37.32+1050 520.4+301.5 184.8+2952 211.6+13.67 0.803
Grad. Ascent [52] 2.894+0.000 6.401+0.186 54.06+5.06 185.0+72.88 318.0+12.05 255.3+6.379 0.862 .
RoMA (Ours) 323020015 616020015 689926687 560152247 370.826771 2524ss167 1103 1)~ Yoin

Ymax — Ymin
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Ablation Study: Ratio of high-scoring solutions

Note: maximum score in the dataset can be a naive baseline of offline MBO

Question: Is RoMA beneficial at having more high-scoring solutions than the best offline data?

*  RoMA shows its superiority in this perspective.

—e— CDbAS o— MINs 1201 —e— CbAS —e— MINs
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(a) Molecule (b) Superconductor

Figure 3: Scores of the ground-truth objective function evaluated at samples of different percentiles
in Molecule and Superconductor task. The dotted lines indicate the maximum score in the dataset.
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Ablation Study: Effect of Each Component

Question 1. Does employing ‘robust pre-training’ is helpful?

Robust pre-training itself is certainly beneficial.

Question 2. Does ‘model adaptation’ further shows more improvement?

Confirms the orthogonal improvement of model adaptation.

Expected return

RoMA
—— RoMA w/o adaptation

Gaussian smoothing

100 200 300 400 500
Step
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Conclusion & Discussion

RoMA: We propose a novel offline MBO framework to adaptively adjust the model.
«  We use “smoothness prior” to regularize the proxy model for better generalization

RoMA consists of two-stage procedure.
« Stage 1. Robust pre-training of the proxy model.
« Stage 2. Model adaptation & Gradient-based solution update

RoMA is beneficial at various offline MBO tasks.
* Qutperform all at 4,4 tasks at 100th, 50t" score, respectively.

- State-of-the-art in average.
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