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Abstract

We introduce an efficient optimization-based
meta-learning technique for learning large-scale
implicit neural representations (INRs). Our main
idea is designing an online selection of context
points, which can significantly reduce memory
requirements for meta-learning in any established
setting. By doing so, we expect additional mem-
ory savings which allows longer per-signal adap-
tation horizons (at a given memory budget), lead-
ing to better meta-initializations by reducing my-
opia and, more crucially, enabling learning on
high-dimensional signals. To implement such
context pruning, our technical novelty is three-
fold. First, we propose a selection scheme that
adaptively chooses a subset at each adaptation
step based on the predictive error, leading to the
modeling of the global structure of the signal in
early steps and enabling the later steps to capture
its high-frequency details. Second, we counter-
act any possible information loss from context
pruning by minimizing the parameter distance
to a bootstrapped target model trained on a full
context set. Finally, we suggest using the full
context set with a gradient scaling scheme at test-
time. Our technique is model-agnostic, intuitive,
and straightforward to implement, showing sig-
nificant reconstruction improvements for a wide
range of signals. Code is available at https:
//github.com/jihoontack/ECoP

1. Introduction
Implicit neural representations (INRs) have emerged as a
new paradigm for representing complex signals as con-
tinuous coordinate-mapping functions (e.g., image as a
(x, y) 7→ (r, g, b) mapping) parameterized by neural net-
works. This approach has shown great promise in various
modalities, including images (Martel et al., 2021; Müller
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et al., 2022), videos (Chen et al., 2021), 3D scenes (Park
et al., 2019), and audio (Dupont et al., 2022b), due to their
numerous intriguing properties accompanied by the param-
eter efficiency. However, fitting an INR for a single signal
is even too costly (e.g., more than a half GPU day for a
single HD video; Kim et al., 2022), limiting the scalabil-
ity of learning INRs for a large set of signals. To address
this limitation, optimization-based meta-learning has gained
their attention to accelerate learning (Sitzmann et al., 2020a;
Tancik et al., 2021; Lee et al., 2021), rapidly improving the
reconstruction of signals in a few optimization steps and
thus becoming a standard technique for INR research.

Unfortunately, such optimization-based meta-learning tech-
niques scale very poorly with the dimensionality of the
signal, as coordinate and signal value pairs, often called as
context set, for the optimization increase super-linearly with
respect to the dimension.1 This is problematic since firstly,
a suitable number of gradient steps typically increases with
the size of the context set, and secondly, prior schemes
require the entire context set to be fitted at once. Meta-
learning at scale thus quickly becomes prohibitively expen-
sive in memory requirements. To this end, recent attempts
propose to divide the signal into a set of low-resolution
patches (Dupont et al., 2022b; Schwarz & Teh, 2022). How-
ever, such a method notably increases adaptation time (i.e.,
proportional to the number of patches) and ignores the cross-
patch statistics, which often leads to inefficiency, e.g., mod-
eling redundant patches in the signal.

Instead, drawing inspiration from the recent advances in
data pruning literature (Paul et al., 2021), we ask: Can we
effectively reduce the size of the context set for the optimiza-
tion without compromising the adaptation performance?

Contribution. We propose Error-based Context Pruning
(ECoP), an efficient and effective optimization-based meta-
learning framework for scalable INR learning. Specifically,
ECoP involves online sub-sampling of the context set based
on the error (or the loss) of each element, making mem-
ory efficiency first-class citizens in algorithm design. As
ECoP focuses on high-loss elements at each step of adapta-

1A single 1024×1024 high-resolution image is thus interpreted
as a context set over a million ((x, y), (r, g, b)) pairs.
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Figure 1. Visualization of sampled points (first), the difference between the original signal (middle), and the reconstructed signal (last) via
ECoP trained on ImageNet-100 with SIREN. The sampled coordinates are highlighted in red where the sampling ratio γ is 0.25, and k
denotes the adaptation step. ECoP first focuses on the global structure and then models the high-frequency features of the signal.

tion, it effectively sub-samples based on the feature statistics,
first focusing on the global structure before modeling high-
frequency details of the signal (see Figure 1). Furthermore,
these savings in memory requirements enables longer adap-
tation horizons to learn a better meta-initialization (given
a memory budget) and more crucially, make it possible to
train on higher-dimensional signals.

To implement such context pruning during meta-learning
INRs, we argue two considerations should be taken into
account: (a) minimizing the possible information loss due
to the pruned context and (b) using the full context set (rather
than the pruned set) for the meta-testing. To this end, we
propose two additional techniques.

• Bootstrapped correction: To correct any possible informa-
tion loss introduced by the context pruning, we propose
to nudge the parameters learned using pruned context sets
to be as close as possible to the result obtained using the
full set. Specifically, we generate the bootstrapped target
model by continuing the adaptation from the meta-learner
using the full context set, then minimize the parameter
distance between the two models. Importantly, this correc-
tion introduces significantly less computational overhead
than the meta-learning procedure, as it is unnecessary to
save any intermediate gradients (i.e., second-order gradi-
ents) for generating the target.

• Test-time gradient scaling: We also found that naı̈ve use
of a full context set at meta-testing does not work as
the corresponding gradient norm, i.e., the magnitude of
gradient update, is different from that of pruned contexts
used at meta-training. To address this, we propose scaling
the test-time gradient using the ratio of gradient norms
between the pruned and full context sets.

We verify the efficacy of ECoP through extensive evalua-
tions on various data modalities, including image, video,
audio, and manifold datasets. Overall, our experimental
results demonstrate strong results, consistently and signif-
icantly outperforming previous meta-learning approaches

in signal reconstruction. For instance, measured with peak
signal-to-noise ratio (PSNR), ECoP improves the prior state-
of-the-art results by 38.28→ 40.54 on CelebA (Liu et al.,
2015), 28.86→ 33.99 on UCF-101 (Soomro et al., 2012),
and 31.39→ 36.45 on Librispeeh (Panayotov et al., 2015),
respectively. Furthermore, we demonstrate that ECoP could
even meta-learn on high-dimensional signals (e.g., a video
of 256×256×32) where prior works suffer from a memory
shortage under the same machine.

2. ECoP: Meta-Learning via Error-based
Context Pruning

In this section, we present Error-based Context Pruning
(ECoP), an efficient meta-learning scheme for large-scale
implicit neural representation (INR) learning. We first re-
view meta-learning for INRs (Section 2.1), and then present
the core components of ECoP: (i) efficient online context
pruning (Section 2.2), error correction with a bootstrapped
target (Section 2.3), and meta-testing with full context set
(Section 2.4). We provide the overview and pseudocode of
ECoP in Figure 2 and Algorithm 1, respectively.

2.1. Meta-Learning Implicit Neural Representations

Consider given N signals s1, . . . , sN , where each s is rep-
resented as a context set C := {(xj ,yj)}Mj=1 consisting
of M coordinate-value pairs (xj ,yj) with a coordinate
xj ∈ RC and a signal value yj ∈ RD.2 We are inter-
ested in finding parameters θ(1), . . . , θ(N) of corresponding
N INRs fθ(1) , . . . , fθ(N) (respectively); where each INR
fθ(i) : RC → RD well approximates si. A standard choice
of learning these parameters is to optimize each θi to rep-
resent corresponding si independently with mean-squared
error (MSE), i.e., LMSE(θ; C) := 1

M

∑M
j=1 ||fθ(xj)− yj ||22.

However, it requires either significant computations or mem-
ory requirements and thus limits the scalability if N is large
or signals are high-dimensional (i.e., M is large).

2If suitable, we write C as Cfull to note it is full context set.
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Figure 2. Computational diagram of ECoP. A meta-learned initialization θ0 is adapted for K steps to obtain θK , re-ranking and pruning
the context set Chigh at each step for the memory efficiency. Subsequently, we create a target bootstrap model θbootK+L by updating for L
additional steps, now using the full context set Cfull. A meta-loss is computed according to a distance metric µ(θK , θbootK+L) between the
two parameters and the reconstruction error of the meta-learner LMSE(θK ; Cfull). θ0 is then updated to allow the minimization of this
distance in the original K steps, correcting for the pruning of the context set and leading to a better overall initialization.

Remarkably, this process is frequently accelerated by taking
meta-learning approaches: training a shared initialization
θ0 from which each signal s and its corresponding context
set C can be well approximated within a few gradient steps
(Tancik et al., 2021). This is primarily done with model-
agnostic meta-learning (MAML; Finn et al., 2017):

θ0 = min
θ0

EC∼p̂(C)[LMSE(θ0 − α∇θ0LMSE(θ0; C); C)] (1)

where both outer and inner optimization problems are solved
through iterative gradient descent. The inner optimization is
typically iterated for K steps before a meta-optimization (or
outer) step w.r.t θ0 is taken, where p̂(C) is the (empirical)
distribution over context sets, each representing a signal.

However, this approach faces severe memory inefficiency
and thus limits the scalability to high-resolution signals.
This is because the above Eq. (1) requires a memory propor-
tional to the context set size M , where M increases strictly
with the signal resolution (possibly over a million).3 Further-
more, prior works (Tancik et al., 2021; Dupont et al., 2022a)
have exhibited a necessity of second-order optimization in
Eq. (1) for meta-learning INRs, which requires the respec-
tive activations and computation graph to be kept in the
memory; it prevents using memory efficient first-order meta-
learning methods (Finn et al., 2017; Nichol et al., 2018) and
exacerbates the memory inefficiency. Such a second-order
optimization also forces the method to use smallK due to in-
creased memory usage, which leads to overall performance
degradation by falling into myopia.

2.2. Error-based Online Context Pruning

To alleviate memory limitations in meta-learning INRs, we
suggest an online context-pruning strategy during the train-
ing stage which significantly reduces the memory usage but

3Conventional few-shot learning setups in other domains con-
sider relatively small context sets with M ≤ 50.

does not degrade the performance too much: at each inner
loop iteration, our strategy adaptively chooses high-error
coordinate-value pairs (for the adaptation) to reduce the
burden in memory intensive inner optimization.

Our design choice is inspired by data pruning, a recent
surge in interest in the field of machine learning, which
sub-samples a large training dataset to reduce unnecessary
storage and training costs. Here, a recent work suggests the
data-wise error of early training stage neural networks can
be a powerful criterion for data pruning (EL2N score; Paul
et al., 2021). Concretely, given a training iteration k and a
data point (x,y), EL2N score Rk(· , ·) is estimated with the
expectation of the error over the neural network parameters
θk at iteration k, where such expectation can be empirically
estimated with a single model (Sorscher et al., 2022) as:

Rk(x,y) := ‖fθk(x)− y‖2. (2)

Then, one can prune the data with small Rk values in one-
shot from the dataset. Due to its promise, utilizing the EL2N
score is an attractive option for context pruning; however,
exploiting it directly in our problem setup poses a scalabil-
ity issue. Specifically, one should train models per-signal
individually with a large enough iteration to adapt EL2N,
resulting in severe computation burdens especially dealing
with a large set of context sets as in our setup (i.e., large N ).

We circumvent this issue by putting the error-based context
pruning principle inside the meta-training stage: namely,
we reduce a given context set at every inner step iteration
k ≤ K for the next update, leveraging MAML’s ability to
rapidly absorb the information within a few gradient steps.
Such a protocol also lets the pruning be done in online
manner, i.e., re-ranking of scores and subsequent pruning
of examples at each step from the full context set Cfull
according to their ranking, and thus focusing dynamically
on pruning a better set for an update of θk.

Formally, for a given Cfull, our error-based context pruning
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Algorithm 1 Meta-training of ECoP
Input: {si}Ni=1, γ, α, β, λ,K,L

1: Initialize θ0.
2: while not converge do
3: Sample batch {s1, . . . , sB}.
4: for all b = 1 to B do
5: Extract context Cfull from sb.
6: for all k = 0 to K − 1 do
7: # Error-based context pruning

8: Chigh = Top(Cfull; Rk, γ)
9: # Adaptation step

10: θk+1 ← θk − α∇θkLMSE(θk; Chigh)
11: end for
12: # Generate target

13: θbootK+1 ← θK − α∇θKLMSE(θK ; Cfull)
14: . . .# Repeat L-1 times

15: θbootK+L ← stopgrad(θK+L)

16: Lbtotal = LMSE(θK ; Cfull) + λµ(θK , θ
boot
K+L)

17: end for
18: θ0 ← θ0 − β 1

B

∑B
b=1∇θ0Lbtotal

19: end while

scheme is defined with a hyper-parameter γ ∈ (0, 1):

Ckhigh := Top(Cfull; Rk, γ) (3)

where Top returns the elements with γ|Cfull| highest Rk
scores. The sampling ratio γ thus controls over the tradeoff
between (expected) performance and memory requirements.

With the pruned context set Ckhigh at iteration k, we adapt the
meta-learner via gradient descent with a step size α > 0:

θk+1 = θk − α∇θkLMSE(θk; Ckhigh). (4)

One of the intriguing aspects of our online context prun-
ing procedure for INRs is that it automatically samples
the global structure at first and then selects high-frequency
details of the signal (see Figure 1), where such learned sam-
pling resembles the hand-crafted technique for efficient INR
training in previous literature (Landgraf et al., 2022).

2.3. Bootstrap Correction

Despite the careful selection of Ckhigh, reducing the context
set Cfull may introduce information loss. To tackle this
issue, we suggest regularizing the parameter adapted with
the prune context set to be as close to the parameter adapted
with the full context set based on extending the idea of boot-
strapped meta-learning (Flennerhag et al., 2022). Specifi-
cally, after adapting the INR meta-learner for K steps with
the pruned context set (i.e., θK), we additionally adapt L
step with the full context set to generate the bootstrapped
target model θbootK+L which is thus expected to show superior
performance. The meta-learner then learns to minimize the
distance between two models.

Formally, given a pre-defined distance function µ(· , ·), we
regularize θK to minimize the distance to the bootstrapped
target’s parameter θbootK+L (Flennerhag et al., 2022), namely:

µ(θK , θ
boot
K+L), (5)

where we use `2 distance for µ. In practice, we use this regu-
larization by propagating gradients to θK only by operating
a stopgradient operation on θbootK+L.

Note that the bootstrapped correction can be achieved with-
out consuming additional memory burden a lot, as we do
not take second-order gradients w.r.t the bootstrapped pa-
rameters for the optimization of Eq. (1). Furthermore, boot-
strapping introduces an additional benefit, as it extends the
meta-learning horizon larger than K steps without requir-
ing backpropagation through all K + L updates, reducing
myopia induced by the typically short K-step horizon.

Overall meta-learning objective. In practice, we find it
is useful to calculate the final loss as a combination of the
bootstrap correction term and the performance of θK on the
full context set. For a given hyper-parameter λ > 0, the
meta-objective of ECoP becomes:

Ltotal(θ0; Cfull) := LMSE(θK ; Cfull) + λµ(θK , θ
boot
K+L).

2.4. Meta-test with Full Context Set

While we use the pruned context set for meta-training, one
can use the full context set memory efficiently during the
meta-test time by using the first-order adaptation. How-
ever, the problem is the norm of the gradients deviates a lot
from meta-training and testing, i.e., ||∇θLMSE(θ; Chigh)||2 >
||∇θLMSE(θ; Cfull)||2 by design of Chigh, resulting in a sig-
nificant performance degradation. Accordingly, we suggest
a simple remedy to scale the test-time gradient at step k:

gtestk =
||∇θkLMSE(θk; Chigh)||2
||∇θkLMSE(θk; Cfull)||2

∇θkLMSE(θk; Cfull), (6)

so the parameter θk is updated with gtestk instead of
∇θkLMSE(θk; Cfull). We observe that such a simple refine-
ment improves the test-time performance significantly.

3. Related Work
Implicit neural representations (INRs). INRs emerged
as a new paradigm for representing complex, continuous
signals (Sitzmann et al., 2020b; Mildenhall et al., 2020) as
their number of parameters do not strictly scale with the
resolution of the signal (Mescheder et al., 2019; Sitzmann
et al., 2019), easing modeling of multi-modal signals (Du
et al., 2021; Luo et al., 2022) and showing potential for
new approaches to prominent applications and downstream
tasks, including data compression (Dupont et al., 2021), clas-
sification (Dupont et al., 2022a), and generative modeling
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(b) UCF-101 (256×256×32) on NeRV
Figure 3. Qualitative comparison between ECoP and baselines on high-resolution (a) AFHQ and (b) UCF-101 datasets.

(Skorokhodov et al., 2021; Yu et al., 2022). However, fitting
INRs is quite costly (especially for high-resolution signals;
Kim et al., 2022). In this paper, we develop an efficient
meta-learning framework for large-scale INR training.

Efficient meta-learning. There have been several works
in developing (memory) efficient algorithms in the field of
meta-learning. Typically, such algorithms have been ex-
plored in amortization-based (or encoder-based) schemes,
including Prototypical Networks (Snell et al., 2017; Bron-
skill et al., 2021), and Neural Processes (Garnelo et al.,
2018b;a; Galashov et al., 2019). Unlike optimization-based
meta-learning, however, these methods are somewhat lim-
ited in applicability to diverse modalities and INR architec-
tures (requiring modality and model-specific design).

In an optimization-based regime, several memory efficient
schemes were introduced, including first-order MAML
(Finn et al., 2017), Reptile (Nichol et al., 2018), Implicit
MAML (Rajeswaran et al., 2019) and continual trajectory
shifting (Shin et al., 2021), where they do not use the second-
order gradient adaptation. However, recent work has shown
that first-order optimization-based schemes can underper-
form for INRs (Dupont et al., 2022a) where we also ob-
served a similar result (in Table 5). Recently, sparsity has
been combined when meta-learning INRs (Lee et al., 2021;
Schwarz & Teh, 2022), which may help reduce computation
at inference time but still requires some memory usage when
meta-learning and may reduce the network expressive power.
In this paper, we focus on developing a memory efficient
meta-learning framework that is built upon second-order
gradient-based schemes for effective INR learning.

Sparse data selection. ECoP is related to areas of machine
learning, which focus on identifying subsets of a dataset.
For instance, data pruning primarily focuses on designing a
pruning metric to reduce the dataset without comprising the
performance (Toneva et al., 2019; Feldman & Zhang, 2020),
memory-based techniques of continual learning, where sub-
sets of past tasks are used to prevent catastrophic forgetting
(Titsias et al., 2020; Rolnick et al., 2019), and active learn-
ing which involves identifying and labeling data points to

facilitate efficient learning progress during subsequent on-
line updates (Sener & Savarese, 2018; Emam et al., 2021).
In this paper, we develop an online context pruning scheme
for meta-learning by drawing a connection with recent work
of data pruning literature, i.e., EL2N (Paul et al., 2021).

4. Experiments
We extensively validate the effectiveness of the proposed
ECoP by measuring its reconstruction performance on vari-
ous dataset across modalities. We describe the experimental
setups in Section 4.1, then present the main experimental
results in Section 4.2. Finally, we conduct ablation studies
and analysis of ECoP in Section 4.3.

4.1. Experimental Setups

In this section, we briefly provide the overall experimen-
tal setups. See Appendix A for further details of training,
evaluation, architecture, data pre-processing, and resources.

Baselines. For the main experiments, we mainly compare
ECoP with existing meta-learning schemes for INRs, in-
cluding Learnit (Tancik et al., 2021) and TransINR (Chen &
Wang, 2022), and also provide comparisons with efficient
meta-learning methods such as FOMAML (Finn et al., 2017)
and Reptile (Nichol et al., 2018). Additionally, we consider
random initialization (that does not learn the initialization)
as baselines to highlight the effectiveness of meta-learning.
For TransINR, we use the official implementation and hyper-
parameters to reproduce the results, whereas, for Learnit,
we increase the inner adaptation steps with ours for a fair
comparison under the same memory budgets.

Evaluation setup. Unless otherwise specified, we use the
same adaptation steps in test-time for both Learnit and ECoP.
For quantitative evaluation, we mainly report peak signal-to-
noise ratio (PSNR; higher is better) for the reconstruction
performance and also measure the perceptual similarity for
image and video datasets by using LPIPS (Zhang et al.,
2018; lower is better) and SSIM (Wang et al., 2004; higher
is better). For video datasets, we evaluate these metrics in
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Table 1. Reconstruction performance of SIREN on image datasets of various resolutions. We report PSNR (dB), SSIM, and LPIPS,
where the same adaptation steps were used for optimization-based meta-learning schemes and random initialization. N/A denotes the
out-of-memory on a single NVIDIA A100 40GB GPU, and the bold indicates the best results of each group.

Resolution Dataset Method PSNR (↑) SSIM (↑) LPIPS (↓)

178×178

CelebA

Random initialization 19.94 0.532 0.708
Learnit (Tancik et al., 2021) 38.28 0.964 0.010
TransINR (Chen & Wang, 2022) 32.37 0.913 0.068
ECoP (Ours) 40.54 0.975 0.005

Imagenette

Random initialization 18.57 0.443 0.810
Learnit (Tancik et al., 2021) 35.66 0.950 0.014
TransINR (Chen & Wang, 2022) 28.58 0.850 0.165
ECoP (Ours) 37.71 0.965 0.007

Text

Random initialization 15.73 0.574 0.755
Learnit (Tancik et al., 2021) 30.31 0.956 0.018
TransINR (Chen & Wang, 2022) 22.70 0.898 0.085
ECoP (Ours) 33.11 0.968 0.009

256×256 ImageNet-100

Random initialization 18.30 0.439 0.855
Learnit (Tancik et al., 2021) 30.92 0.868 0.130
TransINR (Chen & Wang, 2022) 27.78 0.821 0.195
ECoP (Ours) 31.98 0.891 0.079

512×512

CelebA-HQ

Random initialization 19.71 0.636 0.747
Learnit (Tancik et al., 2021) 32.16 0.851 0.249
TransINR (Chen & Wang, 2022) 28.27 0.798 0.299
ECoP (Ours) 33.42 0.874 0.211

AFHQ

Random initialization 18.57 0.488 0.856
Learnit (Tancik et al., 2021) 28.58 0.751 0.354
TransINR (Chen & Wang, 2022) 23.43 0.592 0.573
ECoP (Ours) 29.37 0.784 0.285

1024×1024 CelebA-HQ

Random initialization 12.21 0.574 0.820
Learnit (Tancik et al., 2021) 27.66 0.781 0.513
TransINR (Chen & Wang, 2022) N/A N/A N/A
ECoP (Ours) 28.89 0.789 0.439

a frame-wise manner and average over the whole video by
following the prior works (Chen et al., 2021).

Architectures. We use SIREN (Sitzmann et al., 2020b) as
the base architecture for all experiments, and additionally
consider NeRV (Chen et al., 2021) for the video domain.

Datasets. For the main experiment, we consider four differ-
ent modalities, including image, video, audio, and manifold
datasets. For image datasets, we follow the experimental
setup of Learnit and use CelebA (Liu et al., 2015), Im-
agenette (Howard, 2019), and Text (Tancik et al., 2021)
datasets. We additionally consider the high-resolution multi-
class dataset, i.e., ImageNet-100 (Tian et al., 2020), and
high-resolution fine-grained datasets, including CelebA-HQ
(Karras et al., 2018) and AFHQ (Choi et al., 2020). For the
video dataset, we use UCF-101 (Soomro et al., 2012) with
two different resolutions (128×128, 256×256) and video
clip lengths (16, 32) to demonstrate the scalability of ECoP.
We also consider one audio dataset (Librispeech; Panayotov
et al., 2015) and a climate dataset (ERA5; Hersbach et al.,
2019) to show the versatility of ECoP.

4.2. Main Experiments

In-domain adaptation. We compare the reconstruction
performance of each method on the test datasets across
various modalities. We present the results in Table 1, Table
2, and Table 3. Overall, ECoP significantly and consistently
outperforms the baselines by a large margin. In particular,
measured with PSNR, ECoP outperforms Learnit by 5 dB
under the UCF-101 dataset (128×128×16). Moreover, as
shown in Figure 3b, ECoP exhibits clear superiority over
the baselines in capturing high-frequency components of
the signal, including edges in images and dynamic scene
changes in videos. We believe this benefit comes from the
online context pruning, as it learns to focus more on high-
frequency details at the later adaptation steps. We provide
more qualitative results in Appendix B.7 and Appendix B.8.

We remark that one of the nice properties of ECoP is the
modality- and model-agnosticism: our method covers var-
ious modalities from images to climate datasets. On the
other hand, we find TransINR struggles to generalize in
some modalities and architectures: it requires (a) tokeniza-
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Table 2. Reconstruction performance of meta-learned SIREN and NeRV on UCF-101 dataset. We report PSNR (dB), SSIM, and LPIPS
where 16 adaptation steps were used for optimization-based meta-learning schemes. N/A denotes the out-of-memory on a single NVIDIA
A100 40GB GPU, and the bold indicates the best results of each group.

Resolution Network Method PSNR (↑) SSIM (↑) LPIPS (↓)

128×128×16
SIREN (Sitzmann et al., 2020b)

Learnit (Tancik et al., 2021) 25.46 0.720 0.363
TransINR (Chen & Wang, 2022) 15.14 0.360 0.636
ECoP (Ours) 26.59 0.769 0.237

NeRV (Chen et al., 2021) Learnit (Tancik et al., 2021) 28.86 0.871 0.140
ECoP (Ours) 33.99 0.949 0.019

256×256×32
SIREN (Sitzmann et al., 2020b)

Learnit (Tancik et al., 2021) N/A N/A N/A
TransINR (Chen & Wang, 2022) N/A N/A N/A
ECoP (Ours) 22.76 0.621 0.549

NeRV (Chen et al., 2021) Learnit (Tancik et al., 2021) 23.75 0.659 0.422
ECoP (Ours) 28.58 0.834 0.207

Table 3. PSNR (dB) of meta-learned SIREN on (a) Librispeech,
and (b) ERA5 (181×360) datasets. 1 sec contains 16,000 coordi-
nates, and bold indicates the best results of each group.

(a) Librispeech

PSNR (↑)
Method 1 sec 3 sec

Learnit (Tancik et al., 2021) 39.55 31.39
ECoP (Ours) 43.40 36.45

(b) ERA5

Method PSNR (↑)
Learnit (Tancik et al., 2021) 64.91
ECoP (Ours) 74.10

tion, which is not straightforward for spherical coordinate
datasets (e.g., ERA5), and may require the framework to
deal with too long sequences of tokens (e.g., videos), and
(b) notable modifications when the architecture consists of
non-MLP layers (e.g., NeRV) as the framework is specified
for MLPs. We also provide the comparison with TransINR
utilizing additional test-time optimization in Appendix B.3.

High-resolution signals. One of the significant advantages
of ECoP is its exceptional memory efficiency, which allows
us to meta-learn on large-scale high-resolution signals. As
demonstrated in Table 1 and Table 2, ECoP can even be
trained on 256×256×32 resolution videos or 1024×1024
resolution images, which have been impossible to prior work
(even under the constraint of NVIDIA A100 40GB GPU)
due to their intensive memory usage.

Cross-domain adaptation. We also consider the cross-
domain adaptation scenario: we adapt the meta-learned
model on different datasets or even different modalities
from the meta-training. In particular, we train our method on
UCF-101 and adapt to two different image datasets (CelebA
and Imagenette) and one video dataset (Kinetics-400; Kay
et al., 2017). Table 4 summarizes the results:ECoP signifi-
cantly improves the performance over the baseline even in

Table 4. Cross-domain reconstruction performance (PSNR; dB) of
meta-learned SIREN under UCF-101 (128×128×16) dataset. We
adapt the network to a different dataset and modalities.

Modality Dataset Method PSNR (↑)

Image

CelebA
(128×128)

Learnit (Tancik et al., 2021) 27.74
ECoP (Ours) 28.45

Imagenette
(128×128)

Learnit (Tancik et al., 2021) 25.18
ECoP (Ours) 26.25

Video Kinetics-400
(128×128×16)

Learnit (Tancik et al., 2021) 26.42
ECoP (Ours) 27.32

Table 5. Comparison with other efficient meta-learning schemes
on SIREN meta-learned on CelebA (178×178) dataset.

Method PSNR (↑) SSIM (↑) LPIPS (↓)
FOMAML (Finn et al., 2017) 25.85 0.669 0.342
Reptile (Nichol et al., 2018) 33.41 0.918 0.084
ECoP (Ours) 40.54 0.975 0.005

this scenario, indicating ECoP has learned a transferable
initialization from the diverse motion of UCF-101.

Comparison with efficient meta-learning schemes. We
also compare ECoP with other efficient optimization-based
meta-learning schemes, including first-order MAML (FO-
MAML; Finn et al., 2017) and Reptile (Nichol et al., 2018).
As shown in Table 5, ECoP significantly outperforms the
baselines by a large margin. This observation is consis-
tent with prior works (Dupont et al., 2022a), which have
also shown that first-order meta-learning schemes tend to
struggle with INR learning tasks. Given this, we believe
that efficient second-order meta-learning techniques such as
ECoP will be a promising direction in this field.

4.3. Ablation Studies

Throughout this section, unless otherwise specified, we
perform the experiments on CelebA with SIREN under
a smaller batch size for fast training, use the same mem-
ory usage for meta-training, and use the same adaptation
number at the meta-test stage for all methods. We further
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Figure 4. Test PSNR (dB) of SIREN meta-learned on CelebA (178×178) dataset. (a) Component analysis of ECoP, namely, the use of
error-based context pruning (Error-base), gradient scaling (Grad. Scale), and bootstrapped correction (Boot.), and additionally compare
with random pruning (Random). (b) Demonstration of the long horizon of ECoP, by reporting PSNR according to the adaptation step k.

Table 6. Comparison of context set choice for generating boot-
strapped target on SIREN meta-learned with CelebA (178×178).
We consider no bootstrapping (None), random pruning (Random),
Error-based pruning (Error-based), and the full context set (Full).

Context set PSNR (↑) SSIM (↑) LPIPS (↓)
None 37.49 0.952 0.017
Random 37.56 0.951 0.016
Error-based 37.59 0.955 0.016
Full (ours) 38.72 0.966 0.010

provide the gradient scaling analysis, coordinate loss analy-
sis, using pruned context set for meta-testing, bootstrapped
target’s performance during training, and the training-time
efficiency of ECoP in Appendix B.

Component analysis. We conduct an in-depth analysis of
each training component of ECoP, specifically focusing on
the use of (a) error-based context pruning, (b) bootstrapped
target, and (c) gradient scaling. We evaluated the perfor-
mance of these components by comparing the reconstruction
performance, as detailed in Figure 4a. Our findings indi-
cate that each component plays a crucial role in improving
overall performance. In particular, we find error-based con-
text pruning with gradient scaling itself is quite effective,
where it outperforms Learnit and random pruning. This
indicates that learning long horizons with an effective sam-
pling strategy indeed helps. Furthermore, we found that
incorporating bootstrapped correction not only enhances the
overall performance but also stabilizes the training process
of error-based sampling, which can be prone to instability
when only learning from high-loss samples.

Long horizon of ECoP. Another key benefit of ECoP is
that it enables a longer adaptation horizon per-signal (during
meta-training) due to the memory saving from the context
pruning and thus leads to a better meta-initialization. As
shown in Figure 4b, ECoP shows significant improvement as
the adaptation step increases (unlike Learnit, which suffers
from short-horizon bias), which indicates that our context
pruning scheme can be an effective tool for avoiding the
myopia of meta-learning when using a large context set.

Bootstrapped target analysis. We performed an experi-
ment to investigate whether the gain of bootstrapped correc-
tion mainly comes from the information recovery (by using
the full context set) or the longer horizon effect. To this
end, we examined various sampling methods for adapting
the bootstrapped target, including random context (online),
error-based pruned context, and full context set. The results,
presented in Table 6, indicate that adaptation using the full
context set is indeed effective, and the improvement is at-
tributed to the recovery of information by the target model.
Note that, even random and error-based pruned context also
improves the performance as it additionally provides more
samples but less than the full context set.

5. Discussion and Conclusion
In this paper, we propose an efficient and effective method,
ECoP, for fast and scalable implicit neural representation
(INR) learning. Here, our key idea is to effectively prune
the context set during the meta-training to significantly re-
duce memory usage while maintaining performance. Our
experiments demonstrate that ECoP notably improves the re-
construction performance over various modalities and, more
importantly, exhibits superior memory efficiency where it is
first to meta-learn on exceptional high-resolution signals.

Future work. While we primarily focus on a case where
the context set is used as a target set, i.e., inner and outer
loop optimization uses the same set, incorporating ECoP to
scenarios where the context and target sets are disjoint will
be an interesting future work and worthwhile, e.g., scene
rendering. Moreover, extending ECoP for learning extreme
high-resolution signals (e.g., long 8K video), where a single
forward is not possible under a given memory budget, will
be an interesting future direction to explore. We believe that
a great variety of techniques can be developed in this direc-
tion, for instance, iterative tree-search of high-loss samples
by starting from a low-dimension grid and incrementally
increasing the resolution of the sampled area through ECoP.
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Appendix

A. Experimental Details
In this section, we describe the experimental details of Section 4, including ECoP and the baselines. We also provide the
implementation of ECoP in the supplementary material.

A.1. Dataset Details

CelebA. CelebA is a fine-grained dataset that consists of the face image of celebrities (Liu et al., 2015). The dataset
comprises 202,599 images, where we use 162K for training, 20K for validation, and 20K for testing. We resize the image
into 178 and then apply a center crop of 178, which ends with a resolution of 178× 178. We pre-process pixel coordinates
into [−1, 1]2 and feature values ranging from 0 to 1.

Imagenette. Imagenette is a 10-class subset of the ImageNet (Deng et al., 2009) dataset, which is comprised of 9,000
training and 4,000 test images (Howard, 2019). We resize the image into 178 and then apply a center crop of 178, which
ends with a resolution of 178× 178. We pre-process pixel coordinates into [−1, 1]2 and feature values ranging from 0 to 1.

Text. Text dataset consists of text image with a resolution of 178 × 178 (Tancik et al., 2021). We pre-process the pixel
coordinates into [−1, 1]2 and feature values ranging from 0 to 1.

ImageNet-100. ImageNet-100 is a random subset of ImageNet (Deng et al., 2009) data, which includes 100 classes (Tian
et al., 2020). We resize the image into 256, then center crop the image to get 256×256 resolution image. We pre-process the
pixel coordinates into [−1, 1]2 and feature values ranging from 0 to 1.

CelebA-HQ. CelebA-HQ is a high-resolution fine-grained dataset, which includes images of celebrities (Karras et al., 2018).
We divided the dataset into 27,000 training and 3,000 test samples and pre-processed the pixel coordinates into [−1, 1]2 and
feature values ranging from 0 to 1. We consider two resolutions, i.e., 512×512 and 1024×1024.

AFHQ. AFHQ is a high-resolution fine-grained dataset, which includes animal faces consisting of 15,000 images at 512×512
resolution (Choi et al., 2020). We divided the dataset into 14,336 training and 1,467 testing points, and pre-processed the
pixel coordinates into [−1, 1]2 and feature values ranging from 0 to 1.

UCF-101. UCF-101 is a video dataset comprising 13,320 videos (9,357 training and 3,963 test videos) with a resolution of
320×240, where the action classification consists of 101 classes (Soomro et al., 2012). Each video clip is center-cropped
to 240 × 240 and then resized into 128 × 128 and 256 × 256 with a video clip length of 16 and 32, respectively. We
pre-process the pixel coordinates into [−1, 1]3 and feature values ranging from 0 to 1.

Kinetics-400. For the cross-domain adaptation purpose, we use the mini-Kinetics-200 dataset (Xie et al., 2018), which
consists of 200 categories with the most training samples from the Kinetics-400 dataset (Kay et al., 2017). We center-crop
the videos to the same height and width and then resize them into 128×128 resolution, and use the frame of 16 clips. We
pre-process the pixel coordinates into [−1, 1]3 and feature values ranging from 0 to 1.

ERA5. ERA5 is a dataset comprised of temperature observations on a global grid of equally spaced latitudes and longitudes
(Hersbach et al., 2019). By following (Dupont et al., 2022a), we use the grid resolution of 181 × 360 by resizing the grid.
We interpret each time step as an independent signal, and the dataset comprises 9,676 training points and 2,420 test points.
For the input pre-processing, given latitudes ρ and longitudes ϕ are transformed into 3D Cartesian coordinates c = (cos ρ
cosϕ, cos ρ sinϕ, sin ρ) where latitudes ρ are equally spaced between −π2 and π

2 and longitudes ϕ are equally spaced
between 0 and 2π(n−1)

n where n the number of distinct values of longitude (360).

LibriSpeech. LibriSpeech is an English speech recording collection at a 16kHz sampling rate (Panayotov et al., 2015). By
following Dupont et al. (2022b), we use the train-clean-100 split for training and test-clean split for testing, i.e., 28,539
training and 2,620 test samples. For the main experiments, we use the first 1 second and 3 seconds of each example (1
second contains 16,000 coordinates). For the pre-processing, we scale the coordinates into [−50, 50].
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A.2. Training and Evaluation Details

Network architecture details. For the main experiment, we mainly use SIREN, a multi-layer perception (MLP) with
sinusoidal activation functions (Sitzmann et al., 2020b), i.e., x 7→ sin(ω0(Wx+ b)) where W,b are weight and biases of
the MLP layer and ω0 is the fixed hyperparameter. For image, audio, and manifold datasets, we use SIREN with 5 layers
with 256 hidden dimensions, and for video, we use 7 layers with the same hidden dimension. We used ω0 = 50 for the
manifold dataset and use ω0 = 30 for the rest. We additionally consider NeRV (Chen et al., 2021) for the video dataset. For
the UCF-101 dataset of 128×128×16, we use 4 NeRV blocks, and for 256×256×32, we use 5 NeRV blocks.

Training details. For all dataset, we use Adam optimizer (Kingma & Ba, 2015) for the outer loop. We use the outer step of
150,000, except for learning the UCF-101 dataset with SIREN, where we use 100,000 steps. For SIREN, we use the outer
learning rate of β = 3.0× 10−6 for Librispeech and use β = 1.0× 10−5 for the rest. For NeRV, we use the outer learning
rate of β = 1.0× 10−4. As for the inner loop learning rate, we use α = 1.0× 10−2, and α = 1.0× 10−1 for SIREN and
NeRV, respectively. For inner step number K, ECoP is trained on a longer horizon than Learnit by multiplying 1/γ (which
uses the same memory usage). For Learnit, we use K = 4 for most of the dataset, where we use K = 1 for CelebA-HQ
(1024×1024), K = 2 for UCF-101 (128×128×16) on SIREN, K = 5 on UCF-101 (256×256×32) on NeRV, and K = 20
on UCF-101 (128×128×16) on NeRV. We use the same batch size for Learnit and ECoP to fairly use the memory, e.g.,
ECoP use K = 16 for CelebA as we use the data ratio γ = 0.25 for CelebA. The batch size was selected differently
across the dataset (e.g., under the GPU memory budget), where we found the increased batch size slightly improved the
performance and the stability, but it did not have a significant effect.

Hyperparameter details for ECoP. We find that the hyperparameter introduced by ECoP is not sensitive across datasets
and architectures. For the sampling ratio γ, i.e., the ratio of retaining coordinates, we use 0.25 for most of the dataset except
for Librispeech and ERA5, where we used 0.5 (as we do not need to prune the context much for these low-resolution signals),
and 0.5, 0.2 when training NeRV on UCF-101 on 128 and 256 resolution, respectively. For the bootstrapped correction
hyperparameters, we used L = 5, and λ = 100, where we believe tuning these hyperparameters will indeed improve the
performance much more (we did not tune extensively).

Evaluation details. For the evaluation, to fairly compare with the baseline, we use the same test-time adaptation step for
Learnit and ECoP. Here, we use the same step number that is used by ECoP on meta-training. For the gradient scaling, we
use the same sampling ratio γ to compute the high-loss sample. We additionally compare the results of test-time adaptation
of TransINR in Section B.3.

Resource details. For the main development, we mainly use Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and a single
RTX 3090 24GB GPU, except for high-resolution signals (e.g., CelebA-HQ of 1024× 1024) where we use AMD EPYC
7542 32 Core Processor and a single NVIDIA A100 SXM4 40GB.

A.3. Baseline Details

In this section, we explain the meta-learning baselines we used for evaluating ECoP at a high level.

• Learnit (Tancik et al., 2021) utilizes the second-order gradient version of model-agnostic meta-learning (MAML; Finn
et al., 2017) for learning INRs.

• TransINR (Chen & Wang, 2022) utilizes Transformer as a meta-learner to predict the INR parameter with a given
context set, and additionally proposed a parameter-efficient INR architecture specialized for MLP, i.e., weight grouping.

• FOMAML (Finn et al., 2017) is a memory-efficient MAML that utilizes first-order gradients for the inner loop update,
i.e., no need to save the inner loop adaptation gradients when calculating the outer loop loss.

• Reptile (Nichol et al., 2018) is a memory-efficient meta-learning that utilizes first-order gradients for the inner loop and
uses the parameter difference between the meta-initialization and the adapted model to calculate the outer loop loss.
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B. More Experimental Results
B.1. Loss Statistic of Coordinates
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Figure 5. Loss statistic of coordinates where the indexes are sorted with the loss value and the highlighted region indicates the pruned
context set (with error-based) by a given sampling ratio hyper-parameter γ × 100 (%). k indicates the adaptation step number. We
meta-learn SIREN on CelebA (178×178) dataset with ECoP.

To understand the behavior of ECoP , we analyze the loss statistics of the coordinates. Here, we visualize the error of the
given context set Cfull at adaptation iteration k, namely {Rk(x,y)|(x,y) ∈ Cfull}. Figure 5 shows the loss statistics where
the indexes are sorted by the loss value. As shown in the figure, the distribution is quite similar to the Pareto distribution,
where sampling the high-loss values can be representative points over the context set.

B.2. Analysis on Gradient Scaling
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Figure 6. Gradient norm of the full context set Cfull and the
error-based pruned context set Ckhigh at iteration k.

To further investigate the impact of gradient scaling, we analyze
the gradient norms during the adaptation phase of meta-training.
For this experiment, we train SIREN with ECoP on the CelebA
dataset. Here, we plot the gradient norms at the adaptation step
k measured by the full context set Cfull, and the error-based
pruned context set Ckhigh, respectively. As shown in Figure 6, our
results indicate that the norm of the gradients exhibits significant
variations, with some steps exhibiting 3× larger gradients when
using the pruned context set. This suggests that the meta-learner
employed a larger step size during training, which highlights
the importance of test-time gradient scaling. We also find that
scaling the gradient with the loss ratio of the full context set and
the sampled context leads to similar performance improvements
and may serve as a faster alternative, as it eliminates the need
for gradient calculation twice, i.e., showing 40.21 in PSNR where the gradient scaling with gradient norms shows 40.54.

B.3. Additional Comparison with TransINR under Test-time Optimization

Table 7. Comparison with TransINR under same test-time adaptation steps on SIREN meta-learned with CelebA (178×178) dataset. We
further adapt the same adaptation steps (as ECoP) from the predicted network from TransINR.

Method PSNR (↑) SSIM (↑) LPIPS (↓)
TransINR (Chen & Wang, 2022) 32.37 0.913 0.068
TransINR (Chen & Wang, 2022) + Test-time optimization 34.12 0.932 0.046
ECoP (Ours) 40.54 0.975 0.005

To further verify the superiority of ECoP, we additionally compare with the test-time optimization performance of TransINR.
Here, we use SGD with the same adaptation steps (as ECoP) to further optimize the predicted INR by TransINR. As shown
in Table 7, ECoP significantly shows better results even under this scenario. Still, note that such a comparison is not fair for
ECoP, as TransINR additionally uses a big Transformer encoder over ECoP, which is quite computationally expensive.
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B.4. Performance of Bootstrapped Target during Meta-training
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Figure 7. Meta-training reconstruction performance (PSNR;dB) of bootstrapped target model θbootK+L and the meta-learner with K step
adaptation θK on CelebA (178×178) dataset. Note that the meta-learner uses the pruned context set forK steps, hence, shows comparably
lower PSNR than the meta-test time.

To understand how the bootstrapped target improves the performance of the meta-learner, we compare the performance
of bootstrapped target θbootK+L and the meta-learner θK (adapted K steps from the meta-initialization with the error-based
pruned context set) during the meta-training stage. As shown in Figure 7, we observe that the performance of bootstrapped
target is consistently better than the meta-learner with K step adaptation, which indicates that the proposed target indeed
helps for learning a better initialization. Such observation is quite similar to the prior works in meta-learning (Tack et al.,
2022) and self-supervised learning (Caron et al., 2021), where a consistently better-performing teacher can improve the
student model’s generalization.

B.5. Effectiveness of Using Full Context Set for Meta-testing
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Figure 8. Comparison of test reconstruction performance (PSNR; dB) between the utilization of full context set and error-based pruned
context set during meta-test. The experiment is conducted over a meta-learn SIREN on CelebA (178×178) dataset with ECoP.

To verify that the utilization of a full context set for meta-testing is truly effective, we compare the adaptation performance
when using full and the error-based pruned context set. Here, we only apply the gradient scaling when using the full context
set, as pruned context set gradient norm mismatch does not occur between the meta-training and testing. As shown in Figure
8, using the full context set for the meta-test time is indeed effective and shows consistent improvement over the pruned
context set. Note that using pruned context set is also quite effective as it shows better adaptation performance than Learnit
on a long adaptation horizon.
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B.6. Training Time Efficiency of ECoP
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Figure 9. Comparison of test reconstruction performance (PSNR; dB) between Learnit and ECoP, under the same training wall-clock time.
The experiment is conducted over a meta-learn SIREN on CelebA (178×178) dataset.

We find that ECoP is also efficient in terms of training time. Our method may be seemingly compute-inefficient in terms of
training time as it additionally requires bootstrapped target generation and utilizes a longer horizon adaptation step, however,
we show that it is not. Although ECoP increases the training time of Learnit by roughly 2 times when we use (i) 4 times
longer adaptation step and (ii) additional bootstrapped correction (which overall uses the same memory as Learnit with
γ = 0.25), we have observed it is that it is more than 2 times faster to achieve the best performance of Learnit: in Figure 9,
we compare the accuracy under the same training wall-clock time with Learnit. Furthermore, one can easily reduce the
training time of ECoP by reducing the adaptation step number, which can even bring significant memory efficiency.

B.7. More Qualitative Comparison with Baselines on Image datasets
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Figure 10. Qualitative comparison between ECoP and baselines on high-resolution AFHQ (512×512) dataset.
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Figure 11. Qualitative comparison between ECoP and baselines on high-resolution CelebA-HQ (512×512) dataset.
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B.8. More Qualitative Comparison with Baselines on the Video dataset
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Figure 12. Qualitative comparison between ECoP and Learnit on UCF-101 dataset.
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C. More Visualizations of Sampled Context Points via ECoP on Image datasets
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(b) Imagenette
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(d) ImageNet-100
Figure 13. Visualization of sampled points (first), the difference between the original signal (middle), and the reconstructed signal (last) via
ECoP trained on (a) CelebA-HQ, (b) Imagenette, (c) Text, and (4) ImageNet-100 with SIREN. The sampled coordinates are highlighted in
red where the sampling ratio γ is 0.25, and k denotes the adaptation step.
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D. More Visualizations of Sampled Context Points via ECoP on the Video dataset
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Figure 14. Visualization of sampled points (first), the difference between the original signal (middle), and the reconstructed signal (last)
via ECoP trained on UCF-101 with SIREN. The sampled coordinates are highlighted in red where the sampling ratio γ is 0.25, k denotes
the adaptation step, and t denotes the frame index in each video sequence.


